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Abstract

A framework for controlling a nonlinear dynamical system against escape from a potential well is presented based on
reducing the phase space transport across the separatrix associated with the potential well. A bandlimited open-loop control
with finite lag is considered for systems with weak additive stationary forcing including, specifically, the colored Gaussian
case. The related multiplicative, closed-loop control problem is shown to reduce to an open-loop problem. A numerical
example based on the Duffing oscillator is presented to illustrate the theory.
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1. Introduction

Two broad approaches exist for controlling chaos and, hence, modifying system stability in nonlinear dynamical
systems. The first, which attempts to select and stabilize unstable orbits or steady states, is described in [14] and
references therein. The second seeks to control system stability by modifying the system Melnikov process, typically
through forced resonant parametric oscillation [3,9]. The existence of zeros of the Melnikov process is a renowned
computable criterion for the presence of chaos. The second approach specifically aims to eliminate these zeros.
Modification of the system Melnikov process to achieve stability has until now only been considered for sinusoidal
forcing. This is in part due to a technical difficulty which arises with some other, more general classes of forcing.
For ergodic Gaussian forcing, for example, the Melnikov process exhibits zeros at all forcing levels regardless of the
control employed. The present work has two purposes. First, the difficulty encountered with the Melnikov process is
removed by treating a functional — the flux factor — of the Melnikov process. This allows us to consider controls for
external forcing belonging to the broad class of wide-sense stationary processes including, in particular, Gaussian
forcing. This work’s second purpose is to consider modifying the flux factor not for controlling chaos but rather for
controlling against escape from a potential well. That this is possible is a remarkable result of the fact that the flux
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factor measures both the level of chaos and also, equivalently, the transport of phase space across the separatrix
associated with a potential well.

For systems for which a potential energy can be defined, each well of the potential has in the absence of external
forcing an associated region in phase space bounded by a separatrix. System states interior to the separatrix are
identically those states within the corresponding potential well lacking sufficient energy for escape. States exterior
to the separatrix correspond to states outside the well together with states in the well having too much energy to
remain. The separatrix forms an impenetrable barrier between these two sets of states and if initially within the
separatrix the system state never leaves. In the presence of weak external forcing this global structure persists,
though now the separatrix is supplanted by a pseudo-separatrix through which the system state can possibly pass
and, in so doing, escape from the potential well [17]. In fact, this is the only mechanism for escape from the potential
well and the phase space flux, defined as the quantity of phase space transported across the pseudo-separatrix, is
a measure of the possibility of and the time required for escape from the well. Mean rates of escape for potential
wells are treated from this viewpoint in [15].

Phase space transport is richly interrelated with Melnikov processes, chaotic dynamics and system stability. First,
the time average of the positive part of the Melnikov process or, equivalently, the corresponding ensemble average
provides a leading-order description of the phase space flux across the pseudo-separatrix [2,6,17]. This quantity,
called the flux factor, is, moreover, readily computed for a wide range of system potentials and forcing models.
Second, Melnikov functions and processes are closely related to chaotic dynamics [2,16,17]: for a given realization
of the forcing process, chaos occurs only if the corresponding realization of the Melnikov process has zeros. The
phase space flux in turn has been interpreted as the system’s “propensity” for chaos [2]. Finally, the ratio of fluxes
from competing potential wells has been identified as a measure of the relative stability of the wells [8]. In this sense,
the stability of a well is related, through the phase space flux across the well’s pseudo-separatrix, to the system
tendency to escape from the well.

Because the system state must be transported across the pseudo-separatrix in order to escape from the potential
well, controlling the flux is a means to delay or promote escape and, equivalently, to stabilize or destabilize the
potential well. The flux factor is proposed here as an objective function for control of a weakly forced system against
escape from a potential well. Weak perturbations constituted of stationary forcing and linear damping are treated
with special atttention given to colored Gaussian forcing. We initially consider multiplicative closed-loop control
and show that, with the flux factor as the objective, such controls have equivalent open-loop counterparts in which
the control process evolves in time independently of the system state.

The remainder of the paper is presented in five sections. Section 2 introduces the system, control and forcing
models to be treated. Also in this section, we establish the equivalence of closed-loop multiplicative and open-loop
additive controls. In Section 3, we obtain a necessary and sufficient condition for open-loop control to increase
the stability of the system state within a potential well. Section 4 contains an equivalent condition in terms of the
control lag, identifying the relationship between the optimal control strength and the lag. Section 5 illustrates the
theory with a numerical example based on the Duffing oscillator. Extensions of the theory are briefly indicated in
Section 6.

2. Model

We consider the one-dimensional Newtonian system ¥ = —V’(x) where V (x) is a multistable potential with
a hyperbolic fixed point and a homoclinic orbit z;(f) = (xs(t), £5(¢)) [12]. The homoclinic orbit z;(¢) is the
separatrix for a corresponding potential well of V (x). If the system ¥ = —V’(x) is modified to include a time-
dependent perturbative term, and if this term is sufficiently weak, the separatrix becomes “porous” as noted above,
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forming a proximate pseudo-separatrix [16. p.528]. For suitable values of the system parameters the system state
can penetrate the pseudo-separatrix and hence escape the potential well. Thus we consider the weakly (0 < ¢ < 1)
perturbed system

=V X))+ e[y F@t) — ki —aC()] (1)

in which the stochastic process F (1) is an externally applied force. The forcing F(t) introduces the possibility
of escape, reducing the stability of the potential well. The process C(¢) in (1) is a control process designed to
counteract F(r), delaying or eliminating escapes and increasing the stability of the system state within the well. The
perturbed system considered here is subject to weak damping as represented by the term —kx in (1). Intuitively.
the damping represents passive resistance internal to the system against escape in contradistinction to the control’s
active external resistance. For simplicity only linear damping is considered. The parameters y. k.« > 0 in (1) fix
the relative amounts of forcing, damping and control in the system.
The forcing F(r) in (1) is assumed to be a wide-sense stationary process with zero mean and autocovariance
cp(t) = Cov[F(s). F(s + )] [18]. Its spectral density
x
Cr(v) = / ce(r)e ™ dr
—00C

(the Fourier transform of cg(2)) is assumed to exist so that F(r) can be written F(t) = FIWI) = (f = W) (t)
where F is a time-invariant linear filter with square-integrable impulse response f (#). W (#) is a white noise process
[18,p.112] and (f % W)(t) is the convolution of f() and W (t). The process F (1) = FIWI(t) can be expressed as
the stochastic integral

o
F(t):/f(r—s)dW(s), (2)

where W (z) is a process with orthogonal increments satisfying
E[(W(t1)) = W)W () = W) = 1. 010 [5.4])

forall 1y < r and 13 < 4. Here I([s.f]) = t — s denotes the length of the interval [s. r]. Model (2) includes
Gaussian, shot noise and dichotomous noise forcing models and is. for example, a colored Gaussian process if W(r)
is Brownian motion. Integrals of the type (2) have the property that

20 oC oC
Cov /wl(t)dW(t). f wr(HdW () | = / w (Dwa () dr 3
[ e —5¢ -

provided w (1) and wa (1) are square-integrable [4]. This last condition will be met in our uses of (3) since f(t) is
square-integrable. Given (2), the autocovariance of F (1) is

0
cr(t) = f fs)f(s+1)ds
—oc
with Cg(v) = |f(v)|2. Here and throughout we adhere to the convention that. for example, f(v) is the Fourier

transform of f(#).
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If the control and forcing processes C(¢) and F(¢) are uncorrelated then the presence of C(¢) in (1) cannot
decrease the rate of escape from the potential well. On the other hand, if the path realized by F(r) is completely
known so that C(¢) can be made perfectly correlated with F(¢), then C(r) completely cancels the effect of F(r)
for @ = y. Neither situation is realistic; the control C(z) is, in the first instance, ineffectual and, in the second,
impractical. Reasonably, the control C (¢) should be able at least to track low frequency components of F(7), perhaps
with some lag £ > 0. We therefore model the control process by

C@) =GIFI¢ -0, (4)

where ¢ > 0 is a constant representing the control lag and G is a causal, time-invariant, linear filter with impulse
response g(t) and transfer function g(v). Typically, the control filter G will be low-pass, reflecting the inability of
C (¢) to track high frequency components of F(z). It follows from (4) that

C(t) =(g*8cx F)(t) = (g * 8¢ % f + W),

where §(¢) is the Dirac-d function and 8¢(¢) = §(t — £). The control process C () can therefore be expressed as the
integral

C() = [(g*cig*f)(t—s)dW(s).

Three classes of excitation can be identified for system (1) with increasing degrees of generality. An excitation
x X (t) such as y F(¢t) or «C(¢) in (1) is called additive if x is a constant independent of the system state. More
generally, if x = x(x, x) varies with system state, then the excitation y (x, X)X (¢) is multiplicative. Still more
general are excitations of the form w(X (¢), x, x). The effect of an external excitation on the transport of phase
space and, more specifically, on the flux factor is mediated by a filter © called the orbit filter because of its
dependence on the geometry of the homoclinic orbit [6,7]. For the excitation w(X (¢). x, x) this filter takes the form
[10, p.85]

[o¢]
Olw]@) = / E(Dw(X (T +1), x5(7), %5(7)) dr.
—Q
The filter @ is here neither linear nor time-invariant. For multiplicative excitations, though, iﬁcluding the additive
case, @ is both linear and time-invariant,
o0
OxX1() = f Xs (T x (x5(1), X5 () X (T + 1) dz.
—00

In fact, in this case the orbit filter response can be written as the convolution integral:

OxX1@) = f h(t — )X (1) dr,
where
h(t) = x (xs(—1t), ks (—1))xs(—1) (5)‘

is the orbit filter impulse response [7]. Our analysis, being based.on spectral properties of the excitation and the orbit
filter, requires linearity and time-invariance and is therefore restricted to multiplicative excitations. A schematic
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Fig. 2. Equivalent dynamical system with multiplicative forcing and control given flux factor as the control objective.

diagram of system (1) with multiplicative forcing and control is shown in Fig. 1. Multiplicative controls depend
on the current system state (x, x) and are a form of closed-loop control. If the control is additive then there is no
dependence on system state, there is no feedback path and the control is open-loop.

Whether additive or multiplicative, the effect of the excitation x X (¢) on the flux factor is determined by the
time-invariant linear orbit filter @. Thus if the flux factor is the control objective, the multiplicatively forced and
controlled system in Fig. [ can be represented as in Fig. 2. For system (1) the impulse response (¢} of the orbit filter
& associated with the multiplicative excitation x (x. X)X (r) is as in (5). Thus, as shown in Fig. 2, the excitations
representing forcing and control have associated with them orbit filters @ and @¢ with different impluse responses.
If the excitation x X (¢) is additive, then the impulse reponse in (5) is A(r) = xX;(—t). So for additive excitations
y F(t) and aC(¢) the difference in @ and Oc is one only of multiplicative constants and it is convenient to speak
of a common orbit filter @ with impulse response h (1) = x;(—1). A diagram of the additively forced and controlled
system is shown in Fig. 3. Observe that for the multiplicatively forced and controlled system in Fig. 2. if we choose
© = & and G’ exists such that GO = GO then the system can be represented as shown in Fig. 4. Remarkably,
the representation in Fig. 4 is then the same as that in Fig. 3 for the additively forced and controlled system. This
shows that if the flux factor is the control objective and the system is a weakly perturbed Newtonian system as in (1),
then multiplicative control and/or forcing has an additive representation and means, in particular. that multiplicative
closed-loop control holds no advantage over open-loop control.

The filter G’ satisfying G'©@r = GG¢ does not exist for all combinations of orbit filters @ and &¢ and control
filters G. While our results are not substantively changed in the absence of G’, their derivation is significantly
complicated by the need to account for two orbit filters — @ and @¢ — rather than just @. For example, the vector
process (@[F](¢). @[C](?)) associated with (6) below becomes (Qg[ F1(r). @c[C1(r)). For simplicity, then, we
assume G’ to exist and restrict our attention to the open-loop control problem represented in Fig. 3.




M. Frey, E. Simiu/Physica D 95 (1996) 128-143 133

i I
{ !

% l\ LA 1
W(t) — & P £ : e |- :
Forcing | Orbit !
Filter { Filter i

|
l
Control Lag I gystem |
Filter { State |
| (=0,0) |

W) —o F &G : o |+ {
Forcing : Orbit I
Fitter | Fitter :
g ¢ { ;
| i
Control Lag 1
Filter ! System |
| @@,50) |

Fig. 4. Equivalent open-loop (additive) representation of the multiplicatively forced and controlled dynamical system given flux factor as
the control objective.

Three filters 7, G and @ with corresponding impulse responses f(¢), g(¢) and 4(¢) have been introduced. The
filter 7 models the spectrum of the forcing F(7) and need not be causal. The filter ® which we associate with the
homoclinic orbit z;(¢) is necessarily noncausal because its impulse response A(t) = x;(—1) is nonzero for ¢ < 0.
Neither case presents a logical problem as neither filter is itself directly identified with any physical process or
structure. The control filter G, however, represents some mechanical or electronic device. It must therefore be causal
with real impulse response function g(¢z) =0 forz < 0.

3. Condition for increased stability

The phase space flux associated with the homoclinic orbit zs(¢) of system (1) can be expressed as ¢ = + 0(82)
[13] where the flux factor & is [6]

E =E[(yX; —aXy —kA)T] (©)

with x* denoting the positive part of the real number x; x™ = x for x > 0 and x™ = 0 otherwise. The joint
distribution of the random variables X and X in (6) is the same as the marginal distribution of the vector process
(O[F1(t), ©[C1(2)) and A is the integral

o0
A=fx§(z)dr @

—00
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=2 f X dxg. _ (8)

<

where x,, is the maximum of x, (7). Expression (6) depends on certain technical properties — ergodicity and uniform
continuity, in particular — of the forcing beyond those related to wide-sense stationarity given above. These issues
are thoroughly treated in [6.7]. Integral (8) identifies A as the area of the interior of the homoclinic orbit z, ().
For small ¢ the flux factor = in (6) is proportional to the time-averaged amount of phase space transported across
the pseudo-separatrix [17]. The flux factor is as discussed above a measure of phase space transport across the
pseudo-separatrix and hence of escape.
The processes F(r) and C(¢) = G| F|(r — ¢) are jointly wide-sense stationary and the orbit filter & is linear and
time-invariant so X| and X» in (6) are zero mean random variables with covariance matrix
0‘12 o112
. )
o 05
The control C (1) to some degree cancels F (7} only if C(r) and F () are positively correlated: if negatively correlated,
C(r) is useless. We therefore ignore negatively correlated controls and. with no loss of generality. assume o2 > 0
in (9). The random variable y X| — « X is zero mean with variance

02=Var[yX| —aXa| =y2cr|2+a2<722—2yaalg. (10)
The flux factor = can then be written
E=E[(cZ—-kA)T]. (11)

where Z = (y X| — aX2)/o. Letting Fz(z) = P(Z < z) be the cumulative distribution function (c.d.f.) of Z we
have further that

E =kAn(c/kA), (12)

where by an elementary calculation

n(x) =x /[1 — Fz(2)]dz (13)
1/x

for x > 0. This function has the following easily established properties: n(x) is convex with 7(0) = 7'(0) =
0.7'(x) >0.17"(x) > 0and

Ny = lim n'(x) = /{l - Fz()]dz.
=2
0

Furthermore, n(x) has the piece-wise linear approximation

0, 0<x <uxp,

/ 14
Nac (X — X0). X > X0 (14)

n(x) = {
where xg = (1 — Fz(0))/n’. The flux factor = is a nondecreasing function of o since n'(x) > 0. Therefore the
control C (1) reduces the flux factor = in (12) and increases the stability of the system state within the potential well
only if the introduction of C(¢) reduces o2 in (10) below its value )/20]2 foro = 0.
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Fig. 5. A plot of n(x) = x¢(1/x) + @(1/x) — | and its linear asymptotic approximation.

In the special case of Gaussian forcing F (¢), the control C(z) is also Gaussian and X and X in (6) are bivariate
Gaussian random variables. Then Z in (11) is a standard Gaussian random variable and n(x) in (13) is [6]

n(x) =x¢(1/x)+(1/x) — 1, (15)

where ¢ (z) = (2m)~1/2 exp(—%zz) is the standard Gaussian density and @(z) is the corresponding c.d.f. The
function n(x) in (15) is shown in Fig. 5 together with its asymptotic approximation

(x) = X 1 x>\/?
x=———, —
"= ar 2 2

derived from (14). The derivative of n(x) in (15) is #'(x) = ¢(1/x) > 0 for all x > O hence, as seen in Fig. 3,

n(x) is a strictly increasing function of x. Thus in this case, as in all cases for which the c.d.f. Fz(z) of Z is strictly

increasing for all —oo < z < 00, the control C(¢) reduces the flux factor = if and only if it reduces o2, In other

words, if the support of Z is (—o0, 0o) then every decrease in o2 produces a corresponding decrease in the flux

factor &; if Z has bounded support, then decreases in o' past a certain point produce no further decrease in =Z.
Returning to the general case of wide-sense stationary forcing, we define

A=o?— }/2012 = cv2c722 —2ayos.

The control C(r) increases the stability of the system state within the potential well only if A < 0. We have, in turn,
that A < 0 if and only if

2222 (16)
y o

Condition (16) on the relative control strength «/y is necessary for the control to increase stability. The optimal
relative control strength satisfying (16) is found by elementary calculus to be

a g12
-l == (17)
¥ loptimal o‘2
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in which case A = —yzalzz /022. See Fig. 6. The reduction in the flux factor achieved at the optimal relative control
strength (17) is
YOl Yol
kan (220) —kan (0221), 18
"\ 7a 2 (18)
where

2 2.2
Q=41-0{/0{0;5.

By the Cauchy—Schwartz inequality 0122 < 012022 so0 < Q < 1.For Qyo,/(kA) > xq (this condition derives from
approximation (14)) the maximum reduction (18) in the flux factor is, from (14), approximately
YOl 144!

kan (22) — kan (120) = (1 - @yornee. 19)

This approximation is exact in the limiting case of no damping: that is, the maximum reduction in the flux factor
is (1 — Q)yo1ns for k = 0. Approximation (19) suggests that | — Q be treated as a measure of the proportional
reduction achievable for the flux factor by a given control. The absence of the damping constant k& from 1 — Q
implies that while k does play a role in the flux factor. it is secondary to that played by the second order statistics
of the forcing and control processes. This is unsurprising since the damping resists the action of both F(r) and
C(2).

4. Role of control lag

We begin by expressing the components 012. 022 and o2 of (9) as integrals. Let co|r(t) = Cov[®[F]1(r +
1), ®[F1(1)] be the autocovariance of the filtered process @[ F1(¢). The spectral density of @[F](¢) is the Fourier
transform

eorr(v) = AP f )
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of co[F)(t) and

o0 o0
1T . B I
corri) = 5= [ Corre av = — [1BOIP1f )P cos veav.

In particular,
o0
1 220 A2
corrF)(0) = - [R(W)I7] f ()]* dv.
0
Therefore,

[oe]
| A A J
of = Var(X ] = Var[O[F1(0)] = corr1(0) = — f )P f )P dv = ;" (20)
0

For the case in which F(¢) = W(¢) is a white noise process, (20) admits a significant simplification. Using (3) and
N,
(e 0.0}
o = Var[@[W(1)]dv = f RA(1)dt = f £2(t)dr = A,

—00 —00

where A is the area of the region in phase space enclosed by the homoclinic orbit z;(f) = (xs(2), %5(2)).
Let corgrry(t) and cogir)j(v) be the autocovariance and spectral density of the process ®@[G[F]](¢t) which
results from filtering F(t) by G and & successively. It follows that cog[r))(v) = Ih(v)lzlé(v) |2|f(v)[2. Therefore,

o3 = Var[X2] = Var[@[GIF1)(z — £)] = Var[@[G[F1)(*)] = co(g(r)(0)

1 00 X A R 1 o0 R ) R J
=5 / hWP1EW )P dv = — f PRI W) de = 2. 1)
T g

T
0

Using (3) followed by Parseval’s theorem [11],

o12 =Cov[X|, X2] = Cov[®[F1(z), O[G[F1I(z — 0)]

_ [(h*f)(s)(h*g*f*ée)(s)ds
1 OOA ~ R n .
= f h(—=v) f(=0)h(ME W) f()e " dv
v

T P
=5 f A1 ) Pe e dv. 22)
—00

Write g(v) = R(v) + jZ(v) where R(v) and Z(v) are the real and imaginary parts of g(v). The impulse response
g(t) of the control filter G is real so the functions R(v) and Z(v) are even and odd, respectively. Then
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«m=§:; / A F PR W) + JT(v)][cos v — jsin fv] dv

oC
=§1; / AW)2 F P [R(v) cos v + T(v) sin £v] dv
—00
o0 o
= % / 1AW 2 f () PR (v) cos £v dv + % f ()12 f)IPZ(v) sin fv dv. (23)
0 0
We havecosx = | +o(x)and sinx = x + o(xz) in the limit as x — 0 so
o0 oC
o= % f W1 W)PRW) dv + f f AP F ) PZ (v dy + o(0)
0 0
Eﬁ_ﬁg_f_o(g)ﬁﬁ_ﬁe (24)
T 7 T
for small lags ¢. In cases of interest J>» > 0 and J3 > 0. Using approximation (24) for 1> we have
o’ = yzalz +a2022 —2yaoy = yzﬁ + azﬂ — 2)/(1'1g + 2ya€£. (25)
bis b4 b4 b4

If the lag ¢ is small, condition (16) for increased stability is approximately

7
A% L he< b (26)
2y

Approximation (24) from which condition (26) follows was made for convenience. While higher-order terms are
readily included in (24), they do not substantively change the overall result.

Condition (26) is shown in Fig. 7. This condition imposes upper bounds on both of the fundamental control
parameters: the relative strength &/y of the control signal and the lag ¢. Naturally. to delay and minimize escapes.
the lag ¢ should be small since the smaller the lag in C(r) the better it can cancel the forcing F (7). The upper
bound on ¢ indicates that large lags are. as expected. useless and justifies using a small-lag approximation. The
upper bound on the relative strength o/ of the control signal is less intutive. It might be expected that the stronger
the control signal the more of the forcing it could cancel. However, the control C(r) in system (1) actually has
two competing effects. The first, represented by the term —2yaJ2/m in (25), has the effect of decreasing o? and
contributes to increased stability through cancellation of F (7). The second effect of C(¢) is represented by the terms
oty /4 2yafJs/m in (25). For cases of interest. these terms are positive and increase o2, Their presence in (25)
is explained by recognizing that C(¢) is an additional external forcing to the system and, to the extent that it is
mismatched to F(7) because of lag or spectral difference, will promote instability and escape.

Using approximation (24), the optimal relative control strength is

o

14
This is the straight line which bisects the shaded region in Fig. 7. The degree to which stability is increased is, for
the approximate optimal relative control strength (27). the change (18) in the flux factor with

_ (J2 — £53)?
0=/l W (28)

== —¢=, 27
optimal  J) J1 27
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e
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JZ/J3
Lag

Fig. 7. Combinations of relative control signal strength o/y lag £ within the shaded region reduce phase space transport and increase
stability of the system state within the potential well. Outside the shaded region stability is not increased. The solid line in the interior of
the shaded region identifies the optimal choice of relative strength &/y for a given lag £.

For a given relative control strength &/ and lag £, the effectiveness of the control «C(f) depends on the control
filter G and, in particular, on the control filter’s gain |g(v)| = (R?(v) + Z%(v))'/? and its phase tan~"(Z(v)/R(v))
which governs intrinsic lag of the filter. A useful control is one for which the average control power is small relative
to the average forcing power. This implies a control filter with spectral power only at the frequencies needed to
counteract the filtered forcing @[ F](¢) remaining after filtering by the orbit filter @. This, in addition to minimizing
Q in (28), guides the search for a suitable control filter. An example is given to illustrate how a simple “off-the-shelf”
parametric filter might be optimized for a given control problem.

5. Numerical example

We consider a Duffing oscillator described by Eq. (1) with the double-well potential V(x) = x4 /4 — x2 /2.
This system is bistable with a hyperbolic fixed point zg at (x, %) = (0, 0) in phase space. Associated with the
wells of V(x) are two orbits — left and right — homoclinic to zo. The velocity component of the right homoclinic
orbit is x;(t) = —+/2 sech x tanh x. It follows that A = %, the orbit filter impulse response is A(t) = is(—tf) =
V2 sech x tanh x, and the modulus, or gain, of the orbit filter transfer function is [6]

|fz(v)| = 27y sech %nv.

The spectral density of the forcing in this example is broadband with ¢r(v) = 1(—p.p)(v) while the control filter G
has the piecewise linear impulse response g(¢) shown in Fig. 8. The aim of this example is to choose the parameters
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Fig. 8. Two-parameter example of a control filter impulse response with initial response and recoil.

a, b of g(r) to maximize 1 — Q in (19) using expression (28). For this we need to know neither the damping constant
k nor anything of the forcing other than its spectral density.

The parameters of g(¢) determine the duration of the filter’s intital response and recoil. In particular, fora < b. a
may be thought of as the intrinsic lag (additional to the explicitly imposed lag £) of the filter. This choice of filter
is driven by several considerations. First, it is a realistic example of an easily implemented recursive digital filter.
Second, the initial sharp pulse in its impulse response (the triangle centered at 7 = a in Fig. 8) means the intrinsic lag
will not be too large. Third, the two opposing pulses in its impulse response have equal area. Thus the zero-frequency
gain of the control filter is matched to that of the orbit filter: |g(0)| = 1A(0)] = 0. Finally, triangular pulses were
chosen for the impulse response rather than, say, rectangular pulses so that the control’s high frequency spectral
content falls off rapidly. These last two points ensure that the spectral energy of the control will be concentrated
primarily within the passband of the orbit filter and not wasted at near-zero or high frequencies. These spectral
considerations, which lead to a more effective control with less wasted energy. are motivated by knowledge of the
action of the orbit filter on F(¢) and C (7).

The real and imaginary parts of the transfer function of G are

Rv) = Saz(%av) cosav — Saz(ébv) cos(2a + b)v,
Z(v) = —Sa’(Jav) sinav + Sa’(1bv) sin(2a + b)v,

where Sa(x) = sin(x)/x. The squared modulus of the transfer function g(v) is

HOTEVAORSO
=Sa*(lav) + Sa*(1bv) — 2522 (Lav)Sa?(1bv) cos(a + b)v. (29)
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Fig. 9. Moduli of control (a = 0.75, b = 2.25), forcing and Duffing oscillator orbit filter transfer functions.
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Fig. 10. Q in the Duffing oscillator example for various values of control filter parameters a and b.

The transfer function of the control filter G with @ = 0.75 and b = 2.25 is displayed in Fig. 9 along with those of
the forcing filter and the orbit filter. We calculate Jy, J; and J, for B = 5 and various values of a and b. From these,
Q is calculated with the results shown in Fig. 10. These results assume that the control lag ¢ is zero; nonzero lags
increase Q in the fashion specified in (28). In (18) and, more evidently in (19), 1 — Q appears as an approximate
fractional reduction in the flux factor. Hence, for Q close to zero, control significantly reduces the flux and increases
stability against escape. Fig. 10 shows that small Q is possible in the present example for small @ and large 5.
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The average power of the control is an important practical consideration. In the present case, the average power
of C(t) is

K

1 r 1 ; i r

—f 1EW2éF(v)dy = —[lﬁ(u)lzdv < —/ 1gW)Pdv = —.
14 b b1 7
0 4] 4]

Thus the average control power as a fraction of the average power of the forcing F(7) is bounded above by K/B.
For a control filter with a given K. this is large or small depending on the bandwidth B of the forcing spectrum.

The present example indicates the circumstances under which the proposed control scheme is anticipated to
be effective and is analogous, for example, to successful applications of control in the field of active sonic noise
reduction. In noise reduction, control is effective when active and passive techniques are efficiently combined [5].
Passive sound absorptive materials may be used. for exarple. to suppress high frequency sound components while
active cancellation is employed against low frequency components. This efficient solution plays to the strengths
of both methods: high frequency sound absorption requires little absorptive material relative to that needed at low
frequencies while active cancellation is most effective at low frequencies where tracking is less of a problem. In the
context of the present, more abstract example. the control C(¢) successfully counters much of the low frequency
spectral content of 7 (7). Athigh frequencies where C (1) is less effective, the passive filtering inherent in the system
orbit filter @ dampens the high frequency components of F(¢). This suggests a strategy in which the system is
designed with a low-pass orbit filter @ chosen to reject as much of the forcing F (1) as possible and in which the
control C(¢) is designed to counteract the residual forcing £ (1) as it appears at the output of the orbit filter @.

The conrol filter gain |2 (v)|. though important for effective control. reflects nothing of the filter’s timing or phase.
To see this in the example of the Duffing oscillator. note from (29) that |2(v)] = {g(v: a. b)| is symmetric in @
and b; |g(via.b)| = |g(v: b, a)|. Consider two cases: the first in whicha = 1/A and b = A with A > 1 and the
second in which ¢ = A and & = 1/A. The control filter gain is the same in each case. But in the first case, the
implicit filter lag is @ while in the second it is 2a + b — longer than in the first case. Moreover. in the first case the
control C(r) and the forcing F(¢) are positively correlated (the desired relationship) while in the second case they
are negatively correlated. For both reasons — shorter lag and positive correlation — the parameter values in the first
case are a much better choice than those of the second. This example illustrates the point that both timing and gain
must be considered in the choice of control filter.

6. Final remarks

The control problem presented here can be extended in a variety of ways. A more realistic control signal might
incorporate a noise term n () independent of the forcing process as follows:

C(t) =aG[F1(t = ) +n().

The above analysis easily adapts to this model. One finds that the noise #(r) necessarily partially or completely
cancels the increased stability provided by the control process. To a degree. this can be compensated for by increasing
the control signal strength «. reducing the lag ¢ or modifying the control filter G. The linear damping represented by
the term —k ¢ in (1) can be replaced with other forms of damping with no substantive change in the analysis beyond
modification of the constant A in (6) and subsequent expressions. The control problem for systems with multiple
hyperbolic fixed points connected by a heteroclinic cycle is very similar to that presented here and admits similar
results. Finally, the theory worked out here applies generally to wide-sense stationary forcing models including as
we have seen colored Gaussian forcing but including also, for example, dichotomous forcing and shot noise.
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